This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304487 #77 Dec 05 2024 11:40:09 %S A304487 1,4,15,36,73,128,207,312,449,620,831,1084,1385,1736,2143,2608,3137, %T A304487 3732,4399,5140,5961,6864,7855,8936,10113,11388,12767,14252,15849, %U A304487 17560,19391,21344,23425,25636,27983,30468,33097,35872,38799,41880,45121,48524,52095 %N A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6. %C A304487 a(n) is the trace of an n X n matrix A in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry (proved). %C A304487 The first three terms of a(n) coincide with those of A317614. %H A304487 Stefano Spezia, <a href="/A304487/b304487.txt">Table of n, a(n) for n = 1..10000</a> %H A304487 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A304487 a(n) = A045991(n) - Sum_{k=2..n-1} A085046(k) for n > 2 (proved). %F A304487 G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)). %F A304487 a(n) + a(n + 1) = A228958(2*n + 1). %F A304487 From _Colin Barker_, Aug 17 2018: (Start) %F A304487 a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even. %F A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd. %F A304487 a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5. %F A304487 (End) %F A304487 E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - _Stefano Spezia_, Feb 10 2019 %e A304487 For n = 1 the matrix A is %e A304487 1 %e A304487 with trace Tr(A) = a(1) = 1. %e A304487 For n = 2 the matrix A is %e A304487 1, 2 %e A304487 4, 3 %e A304487 with Tr(A) = a(2) = 4. %e A304487 For n = 3 the matrix A is %e A304487 1, 2, 3 %e A304487 8, 9, 4 %e A304487 7, 6, 5 %e A304487 with Tr(A) = a(3) = 15. %e A304487 For n = 4 the matrix A is %e A304487 1, 2, 3, 4 %e A304487 12, 13, 14, 5 %e A304487 11, 16, 15, 6 %e A304487 10, 9, 8, 7 %e A304487 with Tr(A) = a(4) = 36. %p A304487 seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # _Muniru A Asiru_, Sep 17 2018 %t A304487 Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *) %t A304487 CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *) %t A304487 LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43] %o A304487 (MATLAB and FreeMat) %o A304487 for(n=1:43); tm=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6; fprintf('%d\t%0.f\n', n, tm); end %o A304487 (GAP) %o A304487 a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6); %o A304487 (Maxima) %o A304487 a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43); %o A304487 (PARI) Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44)) %o A304487 (PARI) a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6 %o A304487 (Magma) I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // _Vincenzo Librandi_, Aug 26 2018 %o A304487 (GAP) List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # _Muniru A Asiru_, Sep 17 2018 %Y A304487 Cf. A317614, A228958, A045991, A085046. %Y A304487 Cf. A126224 (determinant of the matrix A), A317298 (first differences). %K A304487 nonn,easy %O A304487 1,2 %A A304487 _Stefano Spezia_, Aug 17 2018