This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304489 #13 Jan 10 2020 16:21:11 %S A304489 1,1,1,2,3,2,4,9,9,4,9,26,37,26,9,20,75,134,134,75,20,48,214,469,596, %T A304489 469,214,48,115,612,1577,2445,2445,1577,612,115,286,1747,5204,9480, %U A304489 11513,9480,5204,1747,286,719,4995,16865,35357,50363,50363,35357,16865,4995,719 %N A304489 Triangle read by rows: T(n,k) = number of rooted signed trees with n nodes and k positive edges (0 <= k < n). %C A304489 Equivalently, the number of rooted trees with 2-colored non-root nodes, n nodes and k nodes of the first color. %H A304489 Andrew Howroyd, <a href="/A304489/b304489.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %e A304489 Triangle begins: %e A304489 1; %e A304489 1, 1; %e A304489 2, 3, 2; %e A304489 4, 9, 9, 4; %e A304489 9, 26, 37, 26, 9; %e A304489 20, 75, 134, 134, 75, 20; %e A304489 48, 214, 469, 596, 469, 214, 48; %e A304489 115, 612, 1577, 2445, 2445, 1577, 612, 115; %e A304489 286, 1747, 5204, 9480, 11513, 9480, 5204, 1747, 286; %e A304489 ... %o A304489 (PARI) %o A304489 R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p, y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p, j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v; } %o A304489 { my(A=R(10,y)); for(n=1, #A, print(Vecrev(A[n]))) } %o A304489 (PARI) %o A304489 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A304489 R(n, y)={my(v=[1]); for(k=2,n,v=concat([1], EulerMT(v*(1+y)))); v} %o A304489 { my(A=R(10,y)); for(n=1, #A, print(Vecrev(A[n]))) } %Y A304489 Row sums are A000151. %Y A304489 Columns k=0..1 are A000081, A000243. %Y A304489 Cf. A294783, A302939, A331114. %K A304489 nonn,tabl %O A304489 1,4 %A A304489 _Andrew Howroyd_, May 13 2018