cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304494 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^H(k), where H(k) is the k-th harmonic number.

This page as a plain text file.
%I A304494 #7 Sep 08 2018 05:22:47
%S A304494 1,1,3,20,103,899,8143,84678,975049,13082993,186340631,2878977408,
%T A304494 48899305783,876721463435,16971889682707,349059348881834,
%U A304494 7565120836998801,173313418321443809,4197655086606145387,106097089652021765356,2816940203630838490791,78147038018470085005235
%N A304494 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^H(k), where H(k) is the k-th harmonic number.
%H A304494 Vaclav Kotesovec, <a href="/A304494/b304494.txt">Table of n, a(n) for n = 0..438</a>
%H A304494 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A304494 E.g.f.: Product_{k>=1} (1 + x^k)^(A001008(k)/A002805(k)).
%t A304494 nmax = 21; CoefficientList[Series[Product[(1 + x^k)^HarmonicNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t A304494 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d HarmonicNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
%Y A304494 Cf. A001008, A002805, A168243, A303970, A304496.
%K A304494 nonn
%O A304494 0,3
%A A304494 _Ilya Gutkovskiy_, May 13 2018