cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304523 Number of ordered ways to write n as the sum of a Lucas number (A000032) and a positive odd squarefree number.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 3, 3, 4, 3, 4, 3, 3, 1, 2, 1, 4, 2, 4, 3, 4, 3, 4, 3, 3, 3, 5, 3, 5, 2, 5, 2, 4, 2, 5, 2, 5, 2, 4, 2, 5, 3, 2, 3, 6, 3, 5, 3, 6, 2, 5, 2, 5, 1, 6, 3, 5, 3, 5, 3, 3, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 2, 5, 4, 5, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, May 13 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 11, 13, 27, 29, 67, 139, 193, 247, 851.
It has been verified that a(n) > 0 for all n = 2..5*10^9.
See also A304331, A304333 and A304522 for similar conjectures.

Examples

			a(3) = 1 since 3 = A000032(0) + 1 with 1 odd and squarefree.
a(27) = 1 since 27 = A000032(3) + 23 with 23 odd and squarefree.
a(29) = 1 since 29 = A000032(6) + 11 with 11 odd and squarefree.
a(67) = 1 since 67 = A000032(0) + 5*13 with 5*13 odd and squarefree.
a(247) = 1 since 247 = A000032(6) + 229 with 229 odd and squarefree.
a(851) = 1 since 851 = A000032(0) + 3*283 with 3*283 odd and squarefree.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=LucasL[n];
    QQ[n_]:=QQ[n]=n>0&&Mod[n,2]==1&&SquareFreeQ[n];
    tab={};Do[r=0;k=0;Label[bb];If[k>0&&f[k]>=n,Goto[aa]];If[QQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,90}];Print[tab]