This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304564 #18 May 16 2025 22:59:18 %S A304564 0,2,2,6,75,21,208,3950,540,11220,314880,25740,917280,36029700, %T A304564 1965600,107100000,5627890800,219769200,16995484800,1153034190000, %U A304564 33844456800,3525796058400,300234909744000,6868433880000,927359072640000,96883959332160000,1776393899280000,301733192320560000 %N A304564 Number of minimum total dominating sets in the n-triangular honeycomb bishop graph. %H A304564 Andrew Howroyd, <a href="/A304564/b304564.txt">Table of n, a(n) for n = 1..500</a> %H A304564 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumTotalDominatingSet.html">Minimum Total Dominating Set</a>. %H A304564 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularHoneycombBishopGraph.html">Triangular Honeycomb Bishop Graph</a>. %F A304564 From _Andrew Howroyd_, Apr 04 2025: (Start) %F A304564 a(3*n) = A382777(n). %F A304564 a(3*n+4) = Sum_{k=0..n} A382776(n,k)*(4*binomial(n+k+2,2) * binomial(2*n-k+2,2) + 2*binomial(n+k+3,3) * (2*n-k+1)). %F A304564 See the PARI program for a(3*n+2). (End) %o A304564 (PARI) %o A304564 T(n, k)=binomial(2*n-k, k)*binomial(n+k, n-k)*(2*(n-k))!*(2*k)!/(2^n) %o A304564 b1(n) = sum(k=0, n, T(n,k)) %o A304564 b2(n) = sum(k=0, n, T(n,k)*(2*binomial(n+k+3,3)*(2*n-k+1) + 4*binomial(n+k+2,2)*binomial(2*n-k+2,2))) %o A304564 b3(n) = sum(k=0, n, T(n,k)*(n+k)*(n+k+1)*(7*n-2*k+5)/3) %o A304564 b4(n) = sum(k=0, n, T(n,k)*(2*binomial(n+k+4,4)*(2*n-k+1) + 24*binomial(n+k+2,2)*binomial(2*n-k+3,3))) %o A304564 b5(n) = sum(k=0, n, T(n,k)*(40*binomial(n+k+6,6)*binomial(2*n-k+2,2) + 240*binomial(n+k+5,5)*binomial(2*n-k+3,3) + 304*binomial(n+k+4,4)*binomial(2*n-k+4,4))) %o A304564 a(n) = my(t=n\3); if(n%3==0, b1(t), if(n%3==1, b2(t-1), b1(t+1) + b3(t) + b4(t-1) + b5(t-2))) \\ _Andrew Howroyd_, Apr 09 2025 %Y A304564 Cf. A304553, A304558, A382776, A382777. %K A304564 nonn %O A304564 1,2 %A A304564 _Eric W. Weisstein_, May 14 2018 %E A304564 a(8)-a(10) from _Andrew Howroyd_, May 19 2018 %E A304564 a(11) onwards from _Andrew Howroyd_, May 16 2025