cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304579 a(n) = (n^2 + 1)*(n^2 + 2).

This page as a plain text file.
%I A304579 #37 Feb 24 2023 04:29:00
%S A304579 2,6,30,110,306,702,1406,2550,4290,6806,10302,15006,21170,29070,39006,
%T A304579 51302,66306,84390,105950,131406,161202,195806,235710,281430,333506,
%U A304579 392502,459006,533630,617010,709806,812702,926406,1051650,1189190,1339806,1504302,1683506
%N A304579 a(n) = (n^2 + 1)*(n^2 + 2).
%C A304579 a(n) and A304578(n) are coprime for all n.
%H A304579 Daniele Mastrostefano and Carlo Sanna, <a href="https://arxiv.org/abs/1805.05114">On numbers n with polynomial image coprime with the nth term of a linear recurrence</a>, arXiv:1805.05114. [math.NT], 2018 (see 4.2, page 7).
%H A304579 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A304579 G.f.: 2*(1 - 2*x + 10*x^2 + 3*x^4)/(1 - x)^5.
%F A304579 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
%F A304579 a(n) = A002378(A002522(n)). - _Altug Alkan_, May 17 2018
%F A304579 Sum_{n>=0} 1/a(n) = 1/4 + coth(Pi)*Pi/2 - coth(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - _Amiram Eldar_, Feb 24 2023
%t A304579 CoefficientList[Series[2 (1 - 2 x + 10 x^2 + 3 x^4) / (1 - x)^5, {x, 0, 35}], x] (* or *) Table[(n^2 + 1) (n^2 + 2), {n, 0, 40}]
%t A304579 LinearRecurrence[{5,-10,10,-5,1},{2,6,30,110,306},40] (* _Harvey P. Dale_, Nov 13 2022 *)
%o A304579 (Magma) [(n^2+1)*(n^2+2): n in [0..40]];
%o A304579 (PARI) a(n) = my(k=n^2+1); k*(k+1); \\ _Altug Alkan_, May 17 2018
%Y A304579 Cf. A002522, A304578.
%Y A304579 Subsequence of A002378, A045619, A279019.
%K A304579 nonn,easy
%O A304579 0,1
%A A304579 _Vincenzo Librandi_, May 17 2018