This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304623 #20 Jan 21 2023 11:58:20 %S A304623 1,1,2,1,4,4,1,6,11,8,1,10,21,27,16,1,12,38,61,63,32,1,18,57,120,162, %T A304623 143,64,1,22,87,205,347,409,319,128,1,28,122,333,651,950,1000,703,256, %U A304623 1,32,164,506,1132,1926,2504,2391,1535,512,1,42,217,734,1840 %N A304623 Regular triangle where T(n,k) is the number of aperiodic multisets with maximum k that fit within some normal multiset of weight n. %C A304623 A multiset is normal if it spans an initial interval of positive integers, and is aperiodic if its multiplicities are relatively prime. %H A304623 Andrew Howroyd, <a href="/A304623/b304623.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A304623 T(n,k) = Sum_{j=1..n} Sum_{d|j} Sum_{i=max(1, j+k-n)..d} mu(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1). - _Andrew Howroyd_, Jan 20 2023 %e A304623 Triangle begins: %e A304623 1 %e A304623 1 2 %e A304623 1 4 4 %e A304623 1 6 11 8 %e A304623 1 10 21 27 16 %e A304623 1 12 38 61 63 32 %e A304623 1 18 57 120 162 143 64 %e A304623 1 22 87 205 347 409 319 128 %e A304623 The a(4,3) = 11 multisets are (3), (13), (23), (113), (123), (133), (223), (233), (1123), (1223), (1233). %t A304623 allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A304623 Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Max],{n,10}] %o A304623 (PARI) T(n,k) = sum(j=1, n, sumdiv(j, d, sum(i=max(1, j+k-n), d, moebius(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1)))) \\ _Andrew Howroyd_, Jan 20 2023 %Y A304623 Row sums are A303976. %Y A304623 Cf. A000740, A000837, A001597, A007716, A007916, A027941, A178472, A210554, A301700, A303431, A303546, A303551, A303945, A303974. %K A304623 nonn,tabl %O A304623 1,3 %A A304623 _Gus Wiseman_, May 15 2018