cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.

This page as a plain text file.
%I A304625 #19 May 16 2018 09:55:08
%S A304625 1,0,3,19,101,501,2486,12398,62329,315436,1605330,8207552,42124368,
%T A304625 216903051,1119974861,5796944342,30068145889,156250892593,
%U A304625 813310723907,4239676354631,22130265931880,115654632452514,605081974091853,3168828466966365,16610409114771876,87141919856550506
%N A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.
%C A304625 Number of partitions of n into 2 or more parts of n kinds. - _Ilya Gutkovskiy_, May 16 2018
%H A304625 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A304625 a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - _Vaclav Kotesovec_, May 16 2018
%t A304625 Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
%t A304625 Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]
%Y A304625 Cf. A000065, A008485, A022567, A093160, A270913, A285927, A285928, A286653, A296044, A296162, A296163, A304626.
%K A304625 nonn
%O A304625 0,3
%A A304625 _Ilya Gutkovskiy_, May 15 2018