cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304631 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)).

This page as a plain text file.
%I A304631 #11 Feb 16 2025 08:33:54
%S A304631 1,2,2,3,4,5,6,7,9,11,13,15,18,21,24,28,33,38,43,49,56,64,72,81,92,
%T A304631 104,116,130,146,163,181,201,224,249,275,304,337,372,409,450,496,545,
%U A304631 597,654,717,785,857,935,1022,1115,1213,1320,1437,1562,1695,1839,1996,2164,2342,2534
%N A304631 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)).
%C A304631 Partial sums of A000700.
%H A304631 Vaclav Kotesovec, <a href="/A304631/b304631.txt">Table of n, a(n) for n = 0..2000</a>
%H A304631 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Self-ConjugatePartition.html">Self-Conjugate Partition</a>
%H A304631 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A304631 G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 + (-x)^k).
%F A304631 a(n) ~ exp(Pi*sqrt(n/6)) * 3^(1/4) / (Pi * 2^(1/4) * n^(1/4)). - _Vaclav Kotesovec_, May 19 2018
%t A304631 nmax = 59; CoefficientList[Series[1/(1 - x) Product[(1 + x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t A304631 nmax = 59; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A304631 Cf. A000070, A000700, A036469, A218906, A304632.
%K A304631 nonn
%O A304631 0,2
%A A304631 _Ilya Gutkovskiy_, May 15 2018