This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304641 #7 May 16 2018 14:42:54 %S A304641 1,2,6,74,3078,228842,25277286,3837501194,762731347398, %T A304641 191798593122602,59475206565622566,22290155840476400714, %U A304641 9933314218291366691718,5192540728710234994272362,3147427468437058629798524646,2190237887318737512524514442634,1734606000858253287464231519860038,1551466530739217915273113571521758122,1556475858078242120174483544923467343526 %N A304641 E.g.f. A(x) satisfies: 1 = Sum_{n>=0} ( exp((n+1)*x) - A(x) )^n. %F A304641 G.f. A(x) satisfies: %F A304641 (1) 1 = Sum_{n>=0} ( exp((n+1)*x) - A(x) )^n. %F A304641 (2) 1 = Sum_{n>=0} exp(n*(n+1)*x) / (1 + exp(n*x)*A(x))^(n+1). %e A304641 E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 74*x^3/3! + 3078*x^4/4! + 228842*x^5/5! + 25277286*x^6/6! + 3837501194*x^7/7! + 762731347398*x^8/8! + 191798593122602*x^9/9! + 59475206565622566*x^10/10! + ... %e A304641 such that %e A304641 1 = 1 + (exp(2*x) - A(x)) + (exp(3*x) - A(x))^2 + (exp(4*x) - A(x))^3 + (exp(5*x) - A(x))^4 + (exp(6*x) - A(x))^5 + (exp(7*x) - A(x))^6 + (exp(8*x) - A(x))^7 + ... %e A304641 Also, %e A304641 1 = 1/(1 + A(x)) + exp(2*x)/(1 + exp(x)*A(x))^2 + exp(6*x)/(1 + exp(2*x)*A(x))^3 + exp(12*x)/(1 + exp(3*x)*A(x))^4 + exp(20*x)/(1 + exp(4*x)*A(x))^5 + exp(30*x)/(1 + exp(5*x)*A(x))^6 + exp(42*x)/(1 + exp(6*x)*A(x))^7 + ... %e A304641 RELATED SERIES. %e A304641 log(A(x)) = 2*x + 2*x^2/2! + 54*x^3/3! + 2570*x^4/4! + 199590*x^5/5! + 22598762*x^6/6! + 3488755494*x^7/7! + 701959131050*x^8/8! + 178186466260710*x^9/9! + 55669778154059882*x^10/10! + ... %e A304641 exp(-x) * A(x) = 1 + x + 3*x^2/2! + 61*x^3/3! + 2811*x^4/4! + 214141*x^5/5! + 23949003*x^6/6! + 3665260621*x^7/7! + 732726498171*x^8/8! + 185070066199261*x^9/9! + 57591088296085803*x^10/10! + ... %o A304641 (PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (exp((m+1)*x +x*O(x^#A)) - Ser(A))^m ) )[#A] ); n!*A[n+1]} %o A304641 for(n=0,20, print1(a(n),", ")) %Y A304641 Cf. A304640, A304642. %K A304641 nonn %O A304641 0,2 %A A304641 _Paul D. Hanna_, May 16 2018