cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304646 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - 3*x*A(x) )^n / 2^(n+1).

This page as a plain text file.
%I A304646 #3 May 16 2018 13:41:04
%S A304646 1,6,96,2684,102684,4882174,274765780,17776825674,1296734890800,
%T A304646 105176634515540,9386121584857668,913956454239335458,
%U A304646 96439915256928441812,10963859751632168911670,1336217865100834183214232,173821065329476028503742152,24041575270091169725708672004,3523423542388597676305042145010,545466031946082920876465992159128,88953328262818340590278809406269142
%N A304646 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - 3*x*A(x) )^n / 2^(n+1).
%e A304646 G.f.: A(x) = 1 + 6*x + 96*x^2 + 2684*x^3 + 102684*x^4 + 4882174*x^5 + 274765780*x^6 + 17776825674*x^7 + 1296734890800*x^8 + 105176634515540*x^9 + ...
%e A304646 such that
%e A304646 1 = 1/2 + (1/(1-x) - 3*x*A(x))/2^2 + (1/(1-x)^2 - 3*x*A(x))^2/2^3 + (1/(1-x)^3 - 3*x*A(x))^3/2^4 + (1/(1-x)^4 - 3*x*A(x))^4/2^5 + (1/(1-x)^5 - 3*x*A(x))^5/2^6 + (1/(1-x)^6 - 3*x*A(x))^6/2^7 + ...
%Y A304646 Cf. A301435.
%K A304646 nonn
%O A304646 0,2
%A A304646 _Paul D. Hanna_, May 16 2018