A304660 A run-length describing inverse to A181819. The multiplicity of prime(k) in a(n) is the k-th smallest prime index of n, which is A112798(n,k).
1, 2, 4, 6, 8, 18, 16, 30, 36, 54, 32, 150, 64, 162, 108, 210, 128, 450, 256, 750, 324, 486, 512, 1470, 216, 1458, 900, 3750, 1024, 2250, 2048, 2310, 972, 4374, 648, 7350, 4096, 13122, 2916, 10290, 8192, 11250, 16384, 18750, 4500, 39366, 32768, 25410, 1296
Offset: 1
Keywords
Examples
Sequence of normalized prime multisets together with the normalized prime multisets of their images begins: 1: {} -> {} 2: {1} -> {1} 3: {2} -> {1,1} 4: {1,1} -> {1,2} 5: {3} -> {1,1,1} 6: {1,2} -> {1,2,2} 7: {4} -> {1,1,1,1} 8: {1,1,1} -> {1,2,3} 9: {2,2} -> {1,1,2,2} 10: {1,3} -> {1,2,2,2} 11: {5} -> {1,1,1,1,1} 12: {1,1,2} -> {1,2,3,3} 13: {6} -> {1,1,1,1,1,1} 14: {1,4} -> {1,2,2,2,2} 15: {2,3} -> {1,1,2,2,2} 16: {1,1,1,1} -> {1,2,3,4} 17: {7} -> {1,1,1,1,1,1,1} 18: {1,2,2} -> {1,2,2,3,3}
Crossrefs
Programs
-
Mathematica
Table[With[{y=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Times@@Power[Array[Prime,Length[y]],y]],{n,100}]
Formula
a(n) = Product_{i = 1..Omega(n)} prime(i)^A112798(n,i).
Comments