cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304706 Number of partitions (d1,d2,...,dm) of n such that d1/1 > d2/2 > ... > dm/m and 0 < d1 <= d2 <= ... <= dm.

This page as a plain text file.
%I A304706 #15 Nov 23 2020 08:02:58
%S A304706 1,1,2,2,3,3,4,3,6,5,6,6,8,7,11,10,11,12,15,14,18,17,20,23,27,25,31,
%T A304706 32,35,38,43,43,51,54,59,63,71,73,85,89,96,102,113,120,134,141,149,
%U A304706 161,175,183,203,213,233,252,280,293,319,338,360,383,409,430,468,493,531,565
%N A304706 Number of partitions (d1,d2,...,dm) of n such that d1/1 > d2/2 > ... > dm/m and 0 < d1 <= d2 <= ... <= dm.
%F A304706 a(n) <= A304705(n).
%e A304706 n | Partition (d1,d2,...,dm)    | (d1/1, d2/2, ... , dm/m)
%e A304706 --+-----------------------------+---------------------------------------------
%e A304706 1 | (1)                         | (1)
%e A304706 2 | (2)                         | (2)
%e A304706   | (1, 1)                      | (1, 1/2)
%e A304706 3 | (3)                         | (3)
%e A304706   | (1, 1, 1)                   | (1, 1/2, 1/3)
%e A304706 4 | (4)                         | (4)
%e A304706   | (2, 2)                      | (2, 1)
%e A304706   | (1, 1, 1, 1)                | (1, 1/2, 1/3, 1/4)
%e A304706 5 | (5)                         | (5)
%e A304706   | (2, 3)                      | (2, 3/2)
%e A304706   | (1, 1, 1, 1, 1)             | (1, 1/2, 1/3, 1/4, 1/5)
%e A304706 6 | (6)                         | (6)
%e A304706   | (3, 3)                      | (3, 3/2)
%e A304706   | (2, 2, 2)                   | (2, 1, 2/3)
%e A304706   | (1, 1, 1, 1, 1, 1)          | (1, 1/2, 1/3, 1/4, 1/5, 1/6)
%e A304706 7 | (7)                         | (7)
%e A304706   | (3, 4)                      | (3, 2)
%e A304706   | (1, 1, 1, 1, 1, 1, 1)       | (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7)
%e A304706 8 | (8)                         | (8)
%e A304706   | (3, 5)                      | (3, 5/2)
%e A304706   | (4, 4)                      | (4, 2/1)
%e A304706   | (2, 3, 3)                   | (2, 3/2, 1)
%e A304706   | (2, 2, 2, 2)                | (2, 1, 2/3, 1/2)
%e A304706   | (1, 1, 1, 1, 1, 1, 1, 1)    | (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8)
%e A304706 9 | (9)                         | (9)
%e A304706   | (4, 5)                      | (4, 5/2)
%e A304706   | (2, 3, 4)                   | (2, 3/2, 4/3)
%e A304706   | (3, 3, 3)                   | (3, 3/2, 1)
%e A304706   | (1, 1, 1, 1, 1, 1, 1, 1, 1) | (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9)
%p A304706 b:= proc(n, r, i, t) option remember; `if`(n=0, 1, `if`(i>n, 0,
%p A304706       b(n, r, i+1, t)+`if`(i/t>=r, 0, b(n-i, i/t, i, t+1))))
%p A304706     end:
%p A304706 a:= n-> b(n, n+1, 1$2):
%p A304706 seq(a(n), n=0..80);  # _Alois P. Heinz_, May 17 2018
%t A304706 b[n_, r_, i_, t_] := b[n, r, i, t] = If[n == 0, 1, If[i > n, 0, b[n, r, i + 1, t] + If[i/t >= r, 0, b[n - i, i/t, i, t + 1]]]];
%t A304706 a[n_] := b[n, n + 1, 1, 1];
%t A304706 a /@ Range[0, 80] (* _Jean-François Alcover_, Nov 23 2020, after _Alois P. Heinz_ *)
%Y A304706 Cf. A053251, A053282, A304705, A304707, A304708.
%K A304706 nonn
%O A304706 0,3
%A A304706 _Seiichi Manyama_, May 17 2018