cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304714 Number of connected strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 5, 10, 6, 12, 12, 13, 14, 21, 17, 23, 26, 30, 31, 46, 38, 51, 55, 61, 70, 87, 85, 102, 116, 128, 138, 171, 169, 204, 225, 245, 272, 319, 334, 383, 429, 464, 515, 593, 629, 715, 790, 861, 950, 1082
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(19) = 6 strict integer partitions are (19), (9,6,4), (10,5,4), (10,6,3), (12,4,3), (8,6,3,2). Taking the normalized prime factors of each part (see A112798, A302242), we have the following connected multiset multisystems.
       (19): {{8}}
    (9,6,4): {{2,2},{1,2},{1,1}}
   (10,5,4): {{1,3},{3},{1,1}}
   (10,6,3): {{1,3},{1,2},{2}}
   (12,4,3): {{1,1,2},{1,1},{2}}
  (8,6,3,2): {{1,1,1},{1,2},{2},{1}}
		

Crossrefs

The Heinz numbers of these partitions are given by A328513.

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&]],{n,60}]