A304715 For any n > 0, if A006666(n) >= 0, then a(n) = Sum_{i = 0..A006666(n)-1} 2^i * [T^i(n) == 0 (mod 2)] (where [] is an Iverson bracket and T^i denotes the i-th iterate of the Collatz function A014682); otherwise a(n) = -1.
0, 1, 28, 3, 14, 57, 1896, 7, 7586, 29, 948, 115, 118, 3793, 3824, 15, 474, 15173, 15180, 59, 62, 1897, 1912, 231, 60722, 237, 1102691417057682138372, 7587, 7590, 7649, 137836427132210267296, 31, 242890, 949, 956, 30347, 30350, 30361, 7772616, 119
Offset: 1
Examples
The first terms, alongside the binary representation of a(n) and the Collatz compressed trajectory of a(n) up to the first 1 in reverse order, are: n a(n) bin(a(n)) rev(traj(n)) -- ---- --------- ------------ 1 0 0 (1) 2 1 1 (1, 2) 3 28 11100 (1, 2, 4, 8, 5, 3) 4 3 11 (1, 2, 4) 5 14 1110 (1, 2, 4, 8, 5) 6 57 111001 (1, 2, 4, 8, 5, 3, 6) 7 1896 11101101000 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17, 11, 7) 8 7 111 (1, 2, 4, 8) 9 7586 1110110100010 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17, 11, 7, 14, 9) 10 29 11101 (1, 2, 4, 8, 5, 10) 11 948 1110110100 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17, 11) 12 115 1110011 (1, 2, 4, 8, 5, 3, 6, 12) 13 118 1110110 (1, 2, 4, 8, 5, 10, 20, 13) 14 3793 111011010001 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17, 11, 7, 14) 15 3824 111011110000 (1, 2, 4, 8, 5, 10, 20, 40, 80, 53, 35, 23, 15) 16 15 1111 (1, 2, 4, 8, 16) 17 474 111011010 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17) 18 15173 11101101000101 (1, 2, 4, 8, 5, 10, 20, 13, 26, 17, 11, 7, 14, 9, 18)
Links
Programs
-
PARI
a(n) = my (v=0); for (k=0, oo, if (n==1, return (v), n%2, n = (3*n+1)/2, n = n/2; v += 2^k))
Comments