cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304716 Number of integer partitions of n whose distinct parts are connected.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.
                     (12): {{1,1,2}}
                    (6 6): {{1,2},{1,2}}
                    (8 4): {{1,1,1},{1,1}}
                    (9 3): {{2,2},{2}}
                   (10 2): {{1,3},{1}}
                  (4 4 4): {{1,1},{1,1},{1,1}}
                  (6 3 3): {{1,2},{2},{2}}
                  (6 4 2): {{1,2},{1,1},{1}}
                  (8 2 2): {{1,1,1},{1},{1}}
                (3 3 3 3): {{2},{2},{2},{2}}
                (4 4 2 2): {{1,1},{1,1},{1},{1}}
                (6 2 2 2): {{1,2},{1},{1},{1}}
              (4 2 2 2 2): {{1,1},{1},{1},{1},{1}}
            (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}
(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[Union[#]]]===1&]],{n,30}]

Formula

For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018

Extensions

Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018