A304716 Number of integer partitions of n whose distinct parts are connected.
1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436
Offset: 1
Keywords
Examples
The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following. (12): {{1,1,2}} (6 6): {{1,2},{1,2}} (8 4): {{1,1,1},{1,1}} (9 3): {{2,2},{2}} (10 2): {{1,3},{1}} (4 4 4): {{1,1},{1,1},{1,1}} (6 3 3): {{1,2},{2},{2}} (6 4 2): {{1,2},{1,1},{1}} (8 2 2): {{1,1,1},{1},{1}} (3 3 3 3): {{2},{2},{2},{2}} (4 4 2 2): {{1,1},{1,1},{1},{1}} (6 2 2 2): {{1,2},{1},{1},{1}} (4 2 2 2 2): {{1,1},{1},{1},{1},{1}} (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}} (1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; Table[Length[Select[IntegerPartitions[n],Length[zsm[Union[#]]]===1&]],{n,30}]
Formula
For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018
Extensions
Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018
Comments