A304717 Number of connected strict integer partitions of n with pairwise indivisible parts.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 9, 5, 9, 8, 13, 10, 15, 9, 15, 13, 18, 14, 22, 21, 26, 19, 29, 24, 36, 31, 40, 35, 45, 38, 54, 55, 59, 55, 70, 69, 84, 74, 89, 86, 107, 103, 119, 115, 143, 143, 159
Offset: 1
Keywords
Examples
The a(34) = 13 connected strict integer partitions with pairwise indivisible parts are (34), (18,16), (20,14), (22,12), (24,10), (26,8), (28,6), (30,4), (14,12,8), (15,10,9), (20,8,6), (14,10,6,4), (15,9,6,4). Their corresponding multiset multisystems (see A112798, A302242) are the following. (34): {{1,7}} (30 4): {{1,2,3},{1,1}} (28 6): {{1,1,4},{1,2}} (26 8): {{1,6},{1,1,1}} (24 10): {{1,1,1,2},{1,3}} (22 12): {{1,5},{1,1,2}} (20 14): {{1,1,3},{1,4}} (20 8 6): {{1,1,3},{1,1,1},{1,2}} (18 16): {{1,2,2},{1,1,1,1}} (15 10 9): {{2,3},{1,3},{2,2}} (15 9 6 4): {{2,3},{2,2},{1,2},{1,1}} (14 12 8): {{1,4},{1,1,2},{1,1,1}} (14 10 6 4): {{1,4},{1,3},{1,2},{1,1}}
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,30}]
Comments