cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304717 Number of connected strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 9, 5, 9, 8, 13, 10, 15, 9, 15, 13, 18, 14, 22, 21, 26, 19, 29, 24, 36, 31, 40, 35, 45, 38, 54, 55, 59, 55, 70, 69, 84, 74, 89, 86, 107, 103, 119, 115, 143, 143, 159
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(34) = 13 connected strict integer partitions with pairwise indivisible parts are (34), (18,16), (20,14), (22,12), (24,10), (26,8), (28,6), (30,4), (14,12,8), (15,10,9), (20,8,6), (14,10,6,4), (15,9,6,4). Their corresponding multiset multisystems (see A112798, A302242) are the following.
         (34): {{1,7}}
       (30 4): {{1,2,3},{1,1}}
       (28 6): {{1,1,4},{1,2}}
       (26 8): {{1,6},{1,1,1}}
      (24 10): {{1,1,1,2},{1,3}}
      (22 12): {{1,5},{1,1,2}}
      (20 14): {{1,1,3},{1,4}}
     (20 8 6): {{1,1,3},{1,1,1},{1,2}}
      (18 16): {{1,2,2},{1,1,1,1}}
    (15 10 9): {{2,3},{1,3},{2,2}}
   (15 9 6 4): {{2,3},{2,2},{1,2},{1,1}}
    (14 12 8): {{1,4},{1,1,2},{1,1,1}}
  (14 10 6 4): {{1,4},{1,3},{1,2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,30}]