This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304718 #24 Feb 16 2025 08:33:54 %S A304718 1,1,1,2,2,2,3,5,5,3,5,9,14,9,5,7,18,28,28,18,7,11,29,63,62,63,29,11, %T A304718 15,51,109,150,150,109,51,15,22,79,206,293,380,293,206,79,22,30,126, %U A304718 342,590,787,787,590,342,126,30,42,189,584,1061,1675,1760,1675,1061,584,189,42 %N A304718 Number T(n,k) of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly k horizontally oriented dominoes; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A304718 Alois P. Heinz, <a href="/A304718/b304718.txt">Rows n = 0..25, flattened</a> %H A304718 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FerrersDiagram.html">Ferrers Diagram</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Domino_(mathematics)">Domino</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Domino_tiling">Domino tiling</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ferrers_diagram">Ferrers diagram</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Mutilated_chessboard_problem">Mutilated chessboard problem</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %H A304718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau#Diagrams">Young tableau, Diagrams</a> %H A304718 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %F A304718 T(n,k) = T(n,n-k). %e A304718 : T(2,0) = 2 : T(2,1) = 2 : T(2,2) = 2 : %e A304718 : ._. ._._. : .___. ._.___. : .___. .___.___. : %e A304718 : | | | | | : |___| | |___| : |___| |___|___| : %e A304718 : |_| |_|_| : | | |_| : |___| : %e A304718 : | | : |_| : : %e A304718 : |_| : : : %e A304718 : : : : %e A304718 Triangle T(n,k) begins: %e A304718 1; %e A304718 1, 1; %e A304718 2, 2, 2; %e A304718 3, 5, 5, 3; %e A304718 5, 9, 14, 9, 5; %e A304718 7, 18, 28, 28, 18, 7; %e A304718 11, 29, 63, 62, 63, 29, 11; %e A304718 15, 51, 109, 150, 150, 109, 51, 15; %e A304718 22, 79, 206, 293, 380, 293, 206, 79, 22; %e A304718 30, 126, 342, 590, 787, 787, 590, 342, 126, 30; %e A304718 42, 189, 584, 1061, 1675, 1760, 1675, 1061, 584, 189, 42; %e A304718 ... %p A304718 h:= proc(l, f) option remember; local k; if min(l[])>0 then %p A304718 `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f))) %p A304718 else for k from nops(l) while l[k]>0 by -1 do od; expand( %p A304718 `if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+ %p A304718 `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)) %p A304718 fi %p A304718 end: %p A304718 g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0, %p A304718 `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0): %p A304718 b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) %p A304718 +b(n-i, min(n-i, i), [l[], i])): %p A304718 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])): %p A304718 seq(T(n), n=0..12); %t A304718 h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]] ]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]]; %t A304718 g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0]; %t A304718 b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i - 1, l] + b[n - i, Min[n - i, i], Append[l, i]]]; %t A304718 T[n_] := CoefficientList[b[2n, 2n, {}], x]; %t A304718 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Aug 29 2021, after _Alois P. Heinz_ *) %Y A304718 Row sums give A304662. %Y A304718 Main diagonal and column k=0 give A000041. %Y A304718 T(n,floor(n/2)) gives A304719. %K A304718 nonn,tabl %O A304718 0,4 %A A304718 _Alois P. Heinz_, May 17 2018