This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304730 #7 May 19 2018 17:38:42 %S A304730 1,2,3,4,3,4,3,5,4,6,7,6,5,8,2,6,5,9,10,11,9,12,5,6,7,13,14,15,16,17, %T A304730 16,15,14,18,19,20,13,21,13,22,20,23,24,23,22,25,26,27,28,29,28,27,19, %U A304730 26,20,22,18,22,13,21,11,30,31,32,33,34,35,36,37,38,31,39,2,8,5,9,5,6,7,16,6,17,16,31,12,40,8,31,12,31,11,30,31,39,16,17,16 %N A304730 Restricted growth sequence transform of A046523(A281978(n)). %H A304730 Antti Karttunen, <a href="/A304730/b304730.txt">Table of n, a(n) for n = 1..65535</a> %o A304730 (PARI) %o A304730 up_to = (2^16)+1; %o A304730 v281978 = vector(1+up_to); v281978[1] = 1; %o A304730 minverses = Map(); mapput(minverses,1,1); %o A304730 least_unused_proper_divisor(inverses,n) = { fordiv(n,d,if((d<n) && !mapisdefined(minverses,d), return(d))); (0); } %o A304730 prev=1; n = 2; while(n < up_to+1, try = prev; while(mapisdefined(minverses,try) || !(pd = least_unused_proper_divisor(minverses,try)), try += prev); mapput(minverses,v281978[n] = try,n); mapput(minverses,v281978[1+n] = pd,1+n); prev = pd; n += 2); %o A304730 A281978(n) = v281978[n]; %o A304730 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A304730 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 %o A304730 v304730 = rgs_transform(vector(65535,n,A046523(A281978(n)))); %o A304730 A304730(n) = v304730[n]; %Y A304730 Cf. A046523, A281978. %Y A304730 Compare also to the scatter plots of A304098, A304729 and A304732. %Y A304730 Cf. also A304743. %K A304730 nonn %O A304730 1,2 %A A304730 _Antti Karttunen_, May 19 2018