This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304744 #9 May 27 2018 19:44:29 %S A304744 1,2,2,3,4,5,6,7,2,3,3,8,6,7,9,10,2,3,3,8,6,7,9,10,3,8,8,11,9,10,12, %T A304744 13,4,6,5,7,14,15,15,16,6,9,7,10,17,18,18,19,6,9,7,10,17,18,18,19,9, %U A304744 12,10,13,20,21,21,22,2,3,3,8,6,7,9,10,3,8,8,11,9,10,12,13,3,8,8,11,9,10,12,13,8,11,11,23,12,13,24,25,6,9,7,10,17,18,18,19 %N A304744 Restricted growth sequence transform of A046523(A052330(n)). %C A304744 For all i, j: a(i) = a(j) => A000120(i) = A000120(j). %H A304744 Antti Karttunen, <a href="/A304744/b304744.txt">Table of n, a(n) for n = 0..65537</a> %H A304744 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %o A304744 (PARI) %o A304744 up_to_e = 17; \\ Good for computing up to n = (2^up_to_e)-1 %o A304744 v050376 = vector(up_to_e); %o A304744 ispow2(n) = (n && !bitand(n,n-1)); %o A304744 i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break)); %o A304744 A050376(n) = v050376[n]; %o A304744 A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; %o A304744 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 %o A304744 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A304744 v304744 = rgs_transform(vector(65538,n,A046523(A052330(n-1)))); %o A304744 A304744(n) = v304744[1+n]; %Y A304744 Cf. A046523, A052330. %Y A304744 Cf. also A286622 (A278222), A302791, A304535, A304745. %K A304744 nonn %O A304744 0,2 %A A304744 _Antti Karttunen_, May 27 2018