cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304745 Restricted growth sequence transform of A046523(A207901(n)).

This page as a plain text file.
%I A304745 #8 May 27 2018 19:44:36
%S A304745 1,2,3,2,4,5,6,7,4,5,8,9,3,10,3,2,3,10,11,10,12,13,8,9,4,5,8,9,3,10,3,
%T A304745 2,4,9,8,5,14,15,14,16,17,18,19,18,8,13,12,9,4,9,8,5,14,15,14,16,20,
%U A304745 21,22,21,6,5,4,7,4,9,8,5,14,15,14,16,17,18,19,18,8,13,12,9,12,23,24,13,25,26,25,27,17,18,19,18,8,13,12,9,3,10,11,10,12,13,8
%N A304745 Restricted growth sequence transform of A046523(A207901(n)).
%C A304745 For all i, j: a(i) = a(j) => A005811(i) = A005811(j).
%H A304745 Antti Karttunen, <a href="/A304745/b304745.txt">Table of n, a(n) for n = 0..65537</a>
%H A304745 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%o A304745 (PARI)
%o A304745 up_to_e = 17; \\ Good for computing up to n = (2^up_to_e)-1
%o A304745 v050376 = vector(up_to_e);
%o A304745 ispow2(n) = (n && !bitand(n,n-1));
%o A304745 i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
%o A304745 A050376(n) = v050376[n];
%o A304745 A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
%o A304745 A003188(n) = bitxor(n, n>>1);
%o A304745 A207901(n) = A052330(A003188(n));
%o A304745 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
%o A304745 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A304745 v304745 = rgs_transform(vector(65538,n,A046523(A207901(n-1))));
%o A304745 A304745(n) = v304745[1+n];
%Y A304745 Cf. A046523, A207901.
%Y A304745 Cf. also A286619 (A278219), A304744.
%K A304745 nonn
%O A304745 0,2
%A A304745 _Antti Karttunen_, May 27 2018