cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304786 Expansion of Product_{k>=1} (1 - q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).

This page as a plain text file.
%I A304786 #5 Feb 16 2025 08:33:54
%S A304786 1,-1,-1,-1,0,1,-1,4,2,3,1,8,-8,10,-8,-9,-15,-6,-46,-14,-65,-28,14,
%T A304786 -29,-43,-37,298,59,234,165,738,354,1083,703,1944,-2024,1917,-1085,
%U A304786 3658,-2385,-6421,-7220,118,-15569,-11604,-19162,-9448,-36140,-24561,-50505,-24807,47645
%N A304786 Expansion of Product_{k>=1} (1 - q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
%C A304786 Convolution inverse of A270995.
%H A304786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q</a>
%H A304786 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A304786 G.f.: Product_{k>=1} (1 - A000009(k)*x^k).
%t A304786 nmax = 51; CoefficientList[Series[Product[(1 - PartitionsQ[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%t A304786 a[n_] := a[n] = If[n == 0, 1, Sum[-Sum[d PartitionsQ[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 51}]
%Y A304786 Cf. A000009, A270995, A271619, A304783, A304785.
%K A304786 sign
%O A304786 0,8
%A A304786 _Ilya Gutkovskiy_, May 18 2018