This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304820 #13 Aug 23 2018 02:21:21 %S A304820 1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0, %T A304820 0,2,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1, %U A304820 0,0,0,2,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,1,2,0,0,0,0,0 %N A304820 A co-delta function for non-perfect powers. Dirichlet inverse of A304819. %H A304820 Antti Karttunen, <a href="/A304820/b304820.txt">Table of n, a(n) for n = 1..65537</a> %F A304820 a(n) = Sum_{d|n} A304779(d) * mu(n/d), where A304779 is the Dirichlet inverse of A304653. %t A304820 a[n_]:=a[n]=If[n==1,1,-Sum[(-1)^PrimeOmega[d]*a[n/d],{d,Select[Rest[Divisors[n]],GCD@@FactorInteger[#][[All,2]]==1&]}]]; %t A304820 Table[Sum[a[d]*MoebiusMu[n/d],{d,Divisors[n]}],{n,100}] %o A304820 (PARI) %o A304820 A304819(n) = sumdiv(n,d,if(!ispower(d),(-1)^bigomega(d),0)); %o A304820 A304820(n) = if(1==n,1,-sumdiv(n,d,if(d<n,A304819(n/d)*A304820(d),0))); \\ _Antti Karttunen_, Jul 29 2018 %o A304820 (PARI) %o A304820 A304779(n) = if(1==n,1,-sumdiv(n,d,if((d>1)&&!ispower(d),((-1)^bigomega(d))*A304779(n/d),0))); %o A304820 A304820(n) = sumdiv(n,d,moebius(n/d)*A304779(d)); \\ _Antti Karttunen_, Jul 29 2018 %Y A304820 Positions of nonzero entries appear to be A126706. %Y A304820 Cf. A000005, A000007, A001222, A001597, A005117, A007916, A008683, A008836, A304362, A304653, A304779, A304817, A304819. %K A304820 nonn %O A304820 1,36 %A A304820 _Gus Wiseman_, May 19 2018 %E A304820 More terms from _Antti Karttunen_, Jul 29 2018