cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304836 a(n) = 27*n^2 - 51*n + 24, n>=1.

This page as a plain text file.
%I A304836 #13 May 23 2018 11:40:11
%S A304836 0,30,114,252,444,690,990,1344,1752,2214,2730,3300,3924,4602,5334,
%T A304836 6120,6960,7854,8802,9804,10860,11970,13134,14352,15624,16950,18330,
%U A304836 19764,21252,22794,24390,26040,27744,29502,31314,33180,35100,37074,39102,41184,43320,45510,47754,50052,52404
%N A304836 a(n) = 27*n^2 - 51*n + 24, n>=1.
%C A304836 a(n) is the number of edges in the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).
%H A304836 Colin Barker, <a href="/A304836/b304836.txt">Table of n, a(n) for n = 1..1000</a>
%H A304836 P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, <a href="https://doi.org/10.1016/j.jda.2006.09.002">On minimum metric dimension of honeycomb networks</a>, J. Discrete Algorithms, 6, 2008, 20-27.
%H A304836 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A304836 From _Colin Barker_, May 23 2018: (Start)
%F A304836 G.f.: 6*x^2*(5 + 4*x) / (1 - x)^3.
%F A304836 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
%F A304836 (End)
%p A304836 seq(27*n^2-51*n+24, n = 1 .. 45);
%o A304836 (GAP) List([1..50], n->27*n^2-51*n+24); # _Muniru A Asiru_, May 21 2018
%o A304836 (PARI) concat(0, Vec(6*x^2*(5 + 4*x) / (1 - x)^3 + O(x^40))) \\ _Colin Barker_, May 23 2018
%Y A304836 Cf. A082040, A304837, A304838.
%K A304836 nonn,easy
%O A304836 1,2
%A A304836 _Emeric Deutsch_, May 21 2018