cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

This page as a plain text file.
%I A304873 #10 May 21 2018 03:20:54
%S A304873 1,0,14,64,528,1696,11616,33600,169072,525760,2069922,5928066,
%T A304873 22259874,59321760,193797792,526647420,1566376990,4012181104,
%U A304873 11456306798,28263784110,75995086336,184440427360,468750673616,1104027571108,2730165482640,6239956155696
%N A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).
%C A304873 In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).
%H A304873 Seiichi Manyama, <a href="/A304873/b304873.txt">Table of n, a(n) for n = 0..1000</a>
%F A304873 a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).
%t A304873 nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
%Y A304873 Cf. A054440 (m=2), A260664 (m=3).
%Y A304873 Cf. A000041, A001255, A133042, A304877, A304878.
%K A304873 nonn
%O A304873 0,3
%A A304873 _Vaclav Kotesovec_, May 20 2018