cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304878 G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).

This page as a plain text file.
%I A304878 #9 May 21 2018 07:47:32
%S A304878 1,0,0,6,0,18,30,60,66,258,402,606,1266,1866,3744,6864,9648,15432,
%T A304878 30510,41166,72342,118140,178800,266262,441462,652164,1006410,1567692,
%U A304878 2309958,3385554,5321838,7530462,11128440,16799958,23916474,35123964,51357318,72495126
%N A304878 G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).
%C A304878 In general, if m > 1 and g.f. = Sum_{k>=0} q(k)^m * x^k / Sum_{k>=0} q(k)*x^k, then a(n, m) ~ exp(Pi*sqrt((m^2 - 1)*n/3)) * (m^2 - 1)^(3*m/4 - 1/2) / (2^(2*m - 1/2) * 3^(m/4) * m^(3*m/2 - 1) * n^(3*m/4)).
%H A304878 Seiichi Manyama, <a href="/A304878/b304878.txt">Table of n, a(n) for n = 0..10000</a>
%F A304878 a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (81*6^(1/4)*n^(9/4)).
%t A304878 nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
%Y A304878 Cf. A000009, A260664, A304873, A304877.
%K A304878 nonn
%O A304878 0,4
%A A304878 _Vaclav Kotesovec_, May 20 2018