cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304908 Expansion of x * (d/dx) 1/(1 - Sum_{k>=0} x^(2^k)).

This page as a plain text file.
%I A304908 #6 May 21 2018 11:27:35
%S A304908 0,1,4,9,24,50,108,217,448,882,1740,3366,6504,12428,23660,44745,84352,
%T A304908 158270,296064,551950,1026360,1903524,3522596,6504998,11990160,
%U A304908 22061700,40528748,74343096,136183488,249145148,455265420,830985473,1515201792,2760087990,5023154832,9133857670
%N A304908 Expansion of x * (d/dx) 1/(1 - Sum_{k>=0} x^(2^k)).
%C A304908 Sum of all parts of all compositions (ordered partitions) of n into powers of 2.
%H A304908 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A304908 a(n) = n*A023359(n).
%t A304908 nmax = 35; CoefficientList[Series[x D[1/(1 - Sum[x^2^k, {k, 0, Floor[Log[nmax]/Log[2]] + 1}]), x], {x, 0, nmax}], x]
%t A304908 a[0] = 1; a[n_] := a[n] = Sum[Boole[k == 2^IntegerExponent[k, 2]] a[n - k], {k, 1, n}]; Table[n a[n], {n, 0, 35}]
%Y A304908 Cf. A000079, A001787, A023359, A036987, A281811, A304797, A303666, A304909.
%K A304908 nonn
%O A304908 0,3
%A A304908 _Ilya Gutkovskiy_, May 20 2018