cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304914 Number of trees with positive integer edge labels summing to n.

This page as a plain text file.
%I A304914 #12 Oct 06 2019 01:50:43
%S A304914 1,1,2,4,9,21,55,146,415,1212,3653,11246,35346,112750,364714,1193202,
%T A304914 3943557,13148575,44186841,149536376,509270554,1744342614,6005869285,
%U A304914 20777091355,72192026878,251848377631,881865312582,3098564357293,10922162622233,38614641384893
%N A304914 Number of trees with positive integer edge labels summing to n.
%H A304914 Andrew Howroyd, <a href="/A304914/b304914.txt">Table of n, a(n) for n = 0..500</a>
%F A304914 G.f.: g(x) + (g(x^2) - g(x)^2)*x/(2*(1-x)) where g(x) is the g.f. of A052855.
%t A304914 max = 30; g[_] = 1; Do[g[x_] = Exp[Sum[(g[x^k]/(1 - x^k))*(x^k/k) + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[g[x] + (g[x^2] - g[x]^2)*(x/(2*(1 - x))) + O[x]^max, x] (* _Jean-François Alcover_, May 25 2018 *)
%o A304914 (PARI) \\ here b(n) is A052855 as series
%o A304914 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A304914 b(n)={my(v=[1]); for(i=2, n, v=concat([1], v + EulerT(v))); Ser(v)*(1-x)}
%o A304914 seq(n)={my(g=b(n)); Vec(g + (subst(g,x,x^2) - g^2)*x/(2*(1-x)))}
%Y A304914 Row sums of A303842.
%Y A304914 Cf. A052855.
%K A304914 nonn
%O A304914 0,3
%A A304914 _Andrew Howroyd_, May 20 2018