This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304917 #31 Sep 18 2022 08:00:59 %S A304917 1,7,119,2371,160841,4824499,410308643,16983052531,1801142961773, %T A304917 420707010207331,25408470426711601,6582951805279545151, %U A304917 925103094894275494511,73885357039888240238239,12063348337737606907045313,3876269049503627062809380911 %N A304917 a(n) = prime(n)^n - primorial(n - 1). %F A304917 a(n) = A062457(n) - A002110(n-1). %e A304917 a(1) = prime(1)^1 - primorial(0) = 2^1 - 1 = 1. %p A304917 N:=15: %p A304917 for X from 1 to N do %p A304917 Z:=mul(ithprime(i),i=1..(X-1)); %p A304917 Y:=(ithprime(X)^X-Z); %p A304917 print(Y); %p A304917 end do: %p A304917 # Second Maple program %p A304917 seq(ithprime(k)^k-mul(ithprime(i),i=1..k-1),k=1..15); # _Muniru A Asiru_, Jul 08 2018 %t A304917 Fold[Append[#1, {#1 - #2, #2} & @@ {Prime[#2]^#2, Prime[#2 - 1] #1[[-1, -1]]}] &, {{1, 1}}, Range[2, 16]][[All, 1]] (* _Michael De Vlieger_, Jul 19 2018 *) %o A304917 (PARI) a(n) = prime(n)^n - factorback(primes(n - 1)) \\ _David A. Corneth_, May 21 2018 %Y A304917 Cf. A002110, A062457, A305076 (n such that a(n) is prime). %K A304917 nonn %O A304917 1,2 %A A304917 _David James Sycamore_, May 20 2018