cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304934 a(0) = 0, a(1) = 1 and a(n) = 2*a(n-1)/(n-1) + 64*a(n-2) for n > 1.

This page as a plain text file.
%I A304934 #15 May 22 2018 09:47:28
%S A304934 0,1,2,66,172,4310,12732,280084,894872,18149094,61304940,1173803004,
%T A304934 4136934888,75812881404,276427353048,4891514031720,18343552465968,
%U A304934 315349842088326,1211087339244108,20316955153568876,79648216569893320,1308249951485397396
%N A304934 a(0) = 0, a(1) = 1 and a(n) = 2*a(n-1)/(n-1) + 64*a(n-2) for n > 1.
%C A304934 Let a(0) = 0, a(1) = 1 and a(n) = 2*m*a(n-1)/(n-1) + k^2*a(n-2) for n > 1.
%C A304934 Then G.f. is x/(2*m) * d/dx ((1 + k*x)/(1 - k*x))^(m/k).
%H A304934 Seiichi Manyama, <a href="/A304934/b304934.txt">Table of n, a(n) for n = 0..1000</a>
%F A304934 a(n) = n*A303538(n)/2.
%F A304934 G.f.: x/(1-8*x)^2 * ((1-8*x)/(1+8*x))^(7/8).
%Y A304934 a(n) = 2*a(n-1)/(n-1) + b^2*a(n-2): A001477 (b=1), A100071 (b=2), A304933 (b=4), this sequence (b=8).
%Y A304934 Cf. A303538.
%K A304934 nonn
%O A304934 0,3
%A A304934 _Seiichi Manyama_, May 21 2018