A304720 Number of nonnegative integers k such that n - (4^k - k) is positive and squarefree.
0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 1, 3, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 4, 2, 3, 3, 3, 1, 2, 2, 4, 2, 2, 3, 3, 2, 2, 3, 3, 1, 3, 2, 4, 1, 3, 2, 4, 2, 3, 2, 3
Offset: 1
Keywords
Examples
a(2) = 1 with 2 - (4^0 - 0) = 1 squarefree. a(178) = 1 with 178 - (4^0 - 0) = 3*59 squarefree. a(245) = 1 with 245 - (4^2 - 2) = 3*7*11 squarefree. a(9196727) = 1 with 9196727 - (4^6 - 6) = 19*211*2293 squarefree. a(16130577) = 1 with 16130577 - (4^9 - 9) = 2*7934221 squarefree. a(38029402) = 1 with 38029402 - (4^1 - 1) = 1153*32983 squarefree. a(180196927) = 1 with 180196927 - (4^11 - 11) = 2*139*227*2789 squarefree.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory, Springer, New York, 2010, pp. 341-353.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=4^n-n; tab={};Do[r=0;k=0;Label[bb];If[f[k]>=n,Goto[aa]];If[SquareFreeQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments