A304945 Number of nonnegative integers k such that n - k*L(k) is positive and squarefree, where L(k) denotes the k-th Lucas number A000032(k).
1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 4, 1, 2, 2, 3, 1, 4, 3, 4, 2, 3, 4, 5, 2, 2, 4, 4, 2, 4, 4, 5, 2, 3, 2, 5, 2, 3, 2, 3, 2, 3, 3, 2, 2, 4, 5, 5, 2, 4, 4, 4, 1, 5, 4, 5, 3, 4, 5, 5, 3, 3, 5, 3, 2, 4, 4, 5, 2, 3, 2, 5, 3, 5, 5, 3, 3, 5, 4, 3, 3, 4, 5, 5, 2, 5, 4, 3, 1
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0*L(0) + 1 with 1 squarefree. a(10) = 1 since 10 = 0*L(0) + 2*5 with 2*5 squarefree. a(136) = 1 since 136 = 2*L(2) + 2*5*13 with 2*5*13 squarefree. a(344) = 1 since 344 = 7*L(7) + 3*47 with 3*47 squarefree. a(1036) = 1 since 1036 = 2*L(2) + 2*5*103 with 2*5*103 squarefree. a(1860) = 1 since 1860 = 7*L(7) + 1657 with 1657 squarefree.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory, Springer, New York, 2010, pp. 341-353.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=n*LucasL[n]; QQ[n_]:=QQ[n]=SquareFreeQ[n]; tab={};Do[r=0;k=0;Label[bb];If[f[k]>=n,Goto[aa]];If[QQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments