This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304962 #33 Sep 15 2021 05:35:26 %S A304962 1,2,6,18,50,138,374,994,2610,6778,17414,44346,112034,280970,700038, %T A304962 1733706,4269970,10463154,25518198,61962458,149839602,360958306, %U A304962 866405702,2072579058,4942074082,11748730482,27849974598,65837539522,155236876018,365125130490,856767548022 %N A304962 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)). %C A304962 Convolution of the sequences A034691 and A098407. %H A304962 Alois P. Heinz, <a href="/A304962/b304962.txt">Table of n, a(n) for n = 0..1000</a> %H A304962 Simon Plouffe, <a href="http://vixra.org/abs/1409.0048">Conjectures of the OEIS, as of June 20, 2018.</a> %H A304962 Simon Plouffe, <a href="http://vixra.org/abs/1409.0081">Approximations de séries génératrices et quelques conjectures</a>, Master's thesis, 1992. [see page 24] %H A304962 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A304962 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A304962 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A304962 G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A011782(k). %F A304962 Euler transform of c(n) with g.f.: -x*(-2*x^2-x+2)/(-4*x^3+2*x^2+2*x-1). - _Simon Plouffe_, Jun 20 2018 %F A304962 a(n) ~ A247003 * 2^(n-1) * exp(2*sqrt(n) - 1/2 + c) / (sqrt(Pi)*n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032... - _Vaclav Kotesovec_, Sep 15 2021 %p A304962 g:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A304962 2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A304962 end: %p A304962 b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1), %p A304962 add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i)) %p A304962 end: %p A304962 a:= n-> add(g(n-j)*b(j$2), j=0..n): %p A304962 seq(a(n), n=0..35); # _Alois P. Heinz_, May 22 2018 %p A304962 # Maple program to compute c(n) from a(n) or a(n) from c(n). %p A304962 with(numtheory): %p A304962 andrews:=proc(liste) local n,z,serie,ls,i,d,aaa; %p A304962 n:=nops(liste); %p A304962 aaa:=liste; %p A304962 serie:=listtoseries(aaa,z,ogf): %p A304962 ls:=series(ln(serie),z,n); %p A304962 [seq(coeff(ls,z,d),d=1..n)]; %p A304962 [seq(elemmobius(%,i),i=1..n-1)] %p A304962 end: %p A304962 swerdna:=proc(liste) local n,i,z; %p A304962 n:=nops(liste); %p A304962 series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n); %p A304962 [seq(coeff(%,z,i),i=0..n-1)] %p A304962 end: %p A304962 elemmobius:=proc(liste,d) local k,rep; %p A304962 rep:=0; %p A304962 for k in divisors(d) do %p A304962 rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k) %p A304962 od; %p A304962 rep %p A304962 end: %p A304962 # Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known. %p A304962 # For ordinary partitions the c(n) are [1,1,1,1,1, ...]. %p A304962 # _Simon Plouffe_, Jun 20 2018 %t A304962 nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A304962 Cf. A011782, A015128, A034691, A098407, A156616, A261519, A302239. %K A304962 nonn %O A304962 0,2 %A A304962 _Ilya Gutkovskiy_, May 22 2018