This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304963 #7 May 22 2018 20:33:39 %S A304963 1,1,4,10,31,82,241,664,1898,5316,15058,42374,119718,337432,952373, %T A304963 2685906,7578248,21376331,60306495,170120330,479922212,1353855927, %U A304963 3819280961,10774233218,30394408336,85743168417,241883489742,682358211402,1924947591447,5430317571250,15319043353639 %N A304963 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1} x^(i*j*k)). %C A304963 Invert transform of A007425. %H A304963 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A304963 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A304963 G.f.: 1/(1 - Sum_{k>=1} A007425(k)*x^k). %p A304963 A:= proc(n, k) option remember; `if`(k=1, 1, %p A304963 add(A(d, k-1), d=numtheory[divisors](n))) %p A304963 end: %p A304963 a:= proc(n) option remember; `if`(n=0, 1, %p A304963 add(A(j, 3)*a(n-j), j=1..n)) %p A304963 end: %p A304963 seq(a(n), n=0..35); # _Alois P. Heinz_, May 22 2018 %t A304963 nmax = 30; CoefficientList[Series[1/(1 - Sum[x^(i j k), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}]), {x, 0, nmax}], x] %t A304963 nmax = 30; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] %t A304963 a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}] %Y A304963 Cf. A000005, A007425, A011782, A129921, A174465, A280473, A304964. %K A304963 nonn %O A304963 0,3 %A A304963 _Ilya Gutkovskiy_, May 22 2018