This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304970 #17 Aug 28 2018 02:20:39 %S A304970 1,1,2,4,8,17,39,98,263,759,2299,7259,23649,79057,269629,935328, %T A304970 3290260,11714285,42139053,152963037,559697097,2062574000,7649550572, %U A304970 28534096988,106994891146,403119433266,1525466082179,5795853930652,22102635416716,84579153865570 %N A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges. %H A304970 Andrew Howroyd, <a href="/A304970/b304970.txt">Table of n, a(n) for n = 0..200</a> %F A304970 Partial sums of A035053 if we assume A035053(1) = 0. %F A304970 a(n) = A304937(n) + 1 for n > 0. %e A304970 Non-isomorphic representatives of the a(4) = 8 hypertrees are the following: %e A304970 {} %e A304970 {{1,2}} %e A304970 {{1,2,3}} %e A304970 {{1,2,3,4}} %e A304970 {{1,3},{2,3}} %e A304970 {{1,4},{2,3,4}} %e A304970 {{1,3},{2,4},{3,4}} %e A304970 {{1,4},{2,4},{3,4}} %o A304970 (PARI) \\ here b(n) is A007563 as vector %o A304970 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A304970 b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} %o A304970 seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ _Andrew Howroyd_, Aug 27 2018 %Y A304970 Cf. A030019, A035053, A134954, A134955, A134956, A134957, A134958, A134959, A144959, A304386, A304867, A304911, A304912, A304918, A304968, A304970. %K A304970 nonn %O A304970 0,3 %A A304970 _Gus Wiseman_, May 22 2018