This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A304971 #46 Dec 21 2018 14:55:10 %S A304971 1,2,4,3,5,6,10,7,15,8,14,11,21,12,16,9,13,18,24,17,35,19,29,20,38,23, %T A304971 27,22,42,25,43,26,60,28,58,30,54,31,45,32,62,37,41,33,61,34,44,36,68, %U A304971 47,65,39,71,40,66,46,94,49,63,50,100,51,67,48,92,64,72 %N A304971 a(1) = 0, and for any n > 0, a(2*n) = a(n) + k(n) and a(2*n+1) = a(n) + 3 * k(n) where k(n) is the least positive integer not leading to a duplicate term in the sequence. %C A304971 Apparently every positive integer appears in the sequence. %H A304971 Rémy Sigrist, <a href="/A304971/b304971.txt">Table of n, a(n) for n = 1..10000</a> %H A304971 Rémy Sigrist, <a href="/A304971/a304971.png">Scatterplot of (n, a(n)) for n = 1..10000000</a> %F A304971 a(n) = (3*a(2*n) - a(2*n+1)) / 2. %e A304971 The first terms, alongside k(n) and associate children, are: %e A304971 n a(n) k(n) a(2*n) a(2*n+1) %e A304971 -- ---- ---- ------ -------- %e A304971 1 1 1 2 4 %e A304971 2 2 1 3 5 %e A304971 3 4 2 6 10 %e A304971 4 3 4 7 15 %e A304971 5 5 3 8 14 %e A304971 6 6 5 11 21 %e A304971 7 10 2 12 16 %e A304971 8 7 2 9 13 %e A304971 9 15 3 18 24 %e A304971 10 8 9 17 35 %o A304971 (PARI) lista(nn) = my (a=[1], s=2^a[1]); for (n=1, ceil(nn/2), for (k=1, oo, if (!bittest(s, a[n]+k) && !bittest(s, a[n]+3*k), a=concat(a, [a[n]+k %o A304971 , a[n]+3*k]); s+=2^(a[n]+k) + 2^(a[n]+3*k); break))); a[1..nn] %Y A304971 This sequence is a variant of A305410. %K A304971 nonn,look,nice %O A304971 1,2 %A A304971 _Rémy Sigrist_, Dec 16 2018