A305003 Number of length-n binary words having no subwords that are abelian fourth powers.
1, 2, 4, 8, 14, 26, 48, 88, 146, 236, 394, 674, 1060, 1640, 2536, 4086, 6470, 10292, 16374, 25720, 39332, 60154, 92486, 144218, 217772, 327898, 494384, 745096, 1089186, 1587432, 2338018, 3460572, 4977860, 7197148, 10395464, 14991916, 20924630, 28852352
Offset: 0
Keywords
Examples
For n = 5 the only words not counted are 00000, 00001, 10000, and their complements.
Links
- Lucas Mol, Table of n, a(n) for n = 0..50
- James D. Currie, The number of binary words avoiding abelian fourth powers grows exponentially, Theoretical Computer Science 319 (2004) 441-446. Proves that the number of such words exceeds 2^{(n-15)/16}.
- James D. Currie, Lucas Mol, Narad Rampersad, and Jeffrey Shallit, Extending Dekking's construction of an infinite binary word avoiding abelian 4-powers. Proves that the number of such words of length n is Omega(1.172^n).
- Lucas Mol, Python 3 program for computing a(n) for n = 2..50.
Programs
-
Maple
f:= proc(L) local i, w, j; for i from 1 to floor(nops(L)/4) do if L[2*i]=2*L[i] and L[3*i]=3*L[i] and L[4*i]=4*L[i] then return NULL fi od: L end proc: g:= proc(L) local Lp; Lp:= [0,op(L)]: f(Lp), f(map(`+`,Lp,1)); end proc: S:= [0]: A[0]:= 1: A[1]:= 2:for n from 2 to 31 do S:= map(g, S); A[n]:= 2*nops(S); od: seq(A[i],i=0..31); # Robert Israel, May 23 2018
Comments