cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305008 Triangle read by rows of coefficients for functions and generating functions for the number of achiral color patterns (set partitions) for a row or loop of varying length using exactly n colors (sets).

This page as a plain text file.
%I A305008 #22 Jun 28 2018 03:15:51
%S A305008 1,1,1,1,1,0,1,2,-1,-2,1,2,-1,-4,-2,1,3,-3,-11,0,6,1,3,-3,-17,-8,20,
%T A305008 16,1,4,-6,-32,1,64,20,-20,1,4,-6,-44,-19,140,136,-120,-132,1,5,-10,
%U A305008 -70,5,301,152,-396,-280,28,1,5,-10,-90,-35,541,608,-1228,-1752,800,1216,1,6,-15,-130,15,966,643,-2798
%N A305008 Triangle read by rows of coefficients for functions and generating functions for the number of achiral color patterns (set partitions) for a row or loop of varying length using exactly n colors (sets).
%C A305008 Triangle begins with T(0,0).
%C A305008 Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.
%C A305008 The generating function for exactly n colors (column n of A304972) is
%C A305008   x^n * Sum_{k=0..n} (T(n, k) * x^k) / Product_{k=1..n} (1 - k*x^2).
%C A305008 Both the numerator and denominator of this g.f. have factors of (1+x) and (1-(n-2)*x^2) when n > 2.
%C A305008 Letting S2(m,n) be the Stirling subset number A008277(m,n), the function for exactly n colors for a row or loop of length m, A304972(m,n), n even, is
%C A305008   [m==0 mod 2] * Sum_{k=0..n/2} T(n, 2k) * S2((m+n)/2-k, n) +
%C A305008   [m==1 mod 2] * Sum_{k=1..n/2} T(n, 2k-1) * S2((m+n+1)/2-k, n).
%C A305008 When n is odd, the function for A304972(m,n) is
%C A305008   [m==0 mod 2] * Sum_{k=0..(n-1)/2} T(n, 2k+1) * S2((m+n-1)-k, n) +
%C A305008   [m==1 mod 2] * Sum_{k=0..(n-1)/2} T(n, 2k) * S2((m+n)/2-k, n).
%F A305008 T(n,k) = [1 <= k <= n] * (T(n-1, k-1) + T(n-2, k) - (n-1) * T(n-2, k-2)) + [k==0 & n>=0].
%e A305008 Triangle begins:
%e A305008 1;
%e A305008 1, 1;
%e A305008 1, 1,   0;
%e A305008 1, 2,  -1,   -2;
%e A305008 1, 2,  -1,   -4,  -2;
%e A305008 1, 3,  -3,  -11,   0,   6;
%e A305008 1, 3,  -3,  -17,  -8,  20,  16;
%e A305008 1, 4,  -6,  -32,   1,  64,  20,   -20;
%e A305008 1, 4,  -6,  -44, -19, 140, 136,  -120,  -132;
%e A305008 1, 5, -10,  -70,   5, 301, 152,  -396,  -280,   28;
%e A305008 1, 5, -10,  -90, -35, 541, 608, -1228, -1752,  800, 1216;
%e A305008 1, 6, -15, -130,  15, 966, 643, -2798, -3028, 2236, 3600, 936;
%t A305008 Coef[n_, -1] := Coef[n, -1] = 0; Coef[n_, 0] := Coef[n, 0] = Boole[n>=0];
%t A305008 Coef[n_, k_] := Coef[n, k] = If[k > n, 0, Coef[n-1, k-1] + Coef[n-2, k] - (n-1) Coef[n-2, k-2]]
%t A305008 Table[Coef[n, k], {n, 0, 30}, {k, 0, n}] // Flatten
%Y A305008 Coefficients for functions and generating functions of A304973, A304974, A304975, A304976, which are columns 3-6 of A304972.
%K A305008 sign,tabl,easy
%O A305008 0,8
%A A305008 _Robert A. Russell_, May 23 2018