cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305048 Number of ordered pairs (k, m) of nonnegative integers such that 5^k + 10^m is not only a primitive root modulo prime(n) but also smaller than prime(n).

Original entry on oeis.org

0, 1, 1, 0, 2, 3, 2, 2, 2, 4, 1, 3, 5, 1, 4, 3, 3, 4, 2, 2, 3, 2, 4, 4, 2, 5, 4, 4, 2, 2, 2, 4, 4, 6, 6, 4, 3, 3, 7, 6, 6, 2, 4, 3, 5, 3, 2, 3, 8, 3, 4, 4, 1, 3, 5, 5, 6, 5, 6, 4, 3, 5, 1, 1, 3, 4, 4, 2, 7, 2, 4, 4, 2, 8, 3, 7, 7, 3, 5, 4, 6, 1, 3, 4, 4, 7, 5, 4, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, May 24 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4. In other words, any prime p > 7 has a primitive root g < p of the form 5^k + 10^m with k and m nonnegative integers.
We have verified this for any prime p > 7 not exceeding 10^9.
It seems that a(n) = 1 only for n = 2, 3, 11, 14, 53, 63, 64, 82, 99, 101, 111, 129, 344, 369, 391, 795, 1170, 1587, 5629, 5718, 6613, 430516.
See also A305048 for similar conjectures.

Examples

			a(14) = 1 with 5^2 + 10^0 = 26 a primitive root modulo prime(14) = 43.
a(101) = 1 with 5^0 + 10^0 = 2 a primitive root modulo prime(101) = 547.
a(111) = 1 with 5^2 + 10 = 35 a primitive root modulo prime(111) = 607.
a(5718) = 1 with 5^0 + 10^3 = 1001 a primitive root modulo prime(5718) = 56401.
a(6613) = 1 with 5^1 + 10^3 = 1005 a primitive root modulo prime(6613) = 66301.
a(430516) = 1 with 5^5 + 10^1 = 3135 a primitive root modulo prime(430516) = 6276271.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=Prime[n];
    Dv[n_]:=Dv[n]=Divisors[n];
    gp[g_,p_]:=gp[g,p]=Mod[g,p]>0&&Sum[Boole[PowerMod[g,Dv[p-1][[k]],p]==1],{k,1,Length[Dv[p-1]]-1}]==0;
    tab={};Do[r=0;Do[If[gp[5^a+10^b,p[n]],r=r+1],{a,0,Log[5,p[n]-1]},{b,0,Log[10,p[n]-5^a]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A305232 Number of ordered ways to write 2*n+1 as p + binomial(2k,k) + 2*binomial(2m,m), where p is an odd prime, and k and m are nonnegative integers.

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 3, 4, 3, 5, 4, 5, 6, 5, 4, 4, 6, 6, 4, 5, 4, 6, 6, 6, 7, 6, 6, 4, 5, 6, 6, 8, 5, 5, 6, 5, 7, 9, 8, 5, 8, 9, 6, 9, 7, 8, 6, 6, 4, 7, 8, 7, 7, 4, 8, 10, 9, 7, 8, 9, 5, 7, 6, 5, 7, 7, 7, 3, 6, 7, 7, 9, 6, 9, 6, 9, 9, 7, 7, 8, 9, 6, 5, 8, 10, 10, 6, 8, 7, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 27 2018

Keywords

Comments

The first value of n > 2 with a(n) = 0 is 15212443837. Neither 2*15212443837 + 1 = 30424887675 nor 2*15657981007 + 1 = 31315962015 can be written as the sum of a prime, a central binomial coefficient and twice a central binomial coefficient.

Examples

			a(3) = 1 since 2*3 + 1 = 7 = 3 + binomial(2*1,1) + 2*binomial(2*0,0) with 3 an odd prime.
a(368233372) = 1 since 2*368233372 + 1 = 736466745 = 735761311 + binomial(2*11,11) + 2*binomial(2*0,0) with 735761311 an odd prime.
a(5274658504) = 1 since 2*5274658504 + 1 = 10549317009 = 10549316083 + binomial(2*6,6) + 2*binomial(2*0,0) with 10549316083 an odd prime.
a(8722422187) = 1 since 2*8722422187 + 1 = 17444844375 = 17444844367 + binomial(2*2,2) + 2*binomial(2*0,0) with 17444844367 an odd prime.
a(10296844792) = 1 since 2*10296844792 + 1 = 20593689585 = 20593688659 + binomial(2*6,6) + 2*binomial(2*0,0) with 20593688659 an odd prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;k=0;Label[aa];k=k+1;If[Binomial[2k,k]>=2n+1`,Goto[cc]];m=0;Label[bb];If[2*Binomial[2m,m]>=2n+1-Binomial[2k,k],Goto[aa]]; If[PrimeQ[2n+1-Binomial[2k,k]-2*Binomial[2m,m]],r=r+1];m=m+1;Goto[bb];Label[cc];tab=Append[tab,r],{n,1,90}];Print[tab]
Showing 1-2 of 2 results.