A305048 Number of ordered pairs (k, m) of nonnegative integers such that 5^k + 10^m is not only a primitive root modulo prime(n) but also smaller than prime(n).
0, 1, 1, 0, 2, 3, 2, 2, 2, 4, 1, 3, 5, 1, 4, 3, 3, 4, 2, 2, 3, 2, 4, 4, 2, 5, 4, 4, 2, 2, 2, 4, 4, 6, 6, 4, 3, 3, 7, 6, 6, 2, 4, 3, 5, 3, 2, 3, 8, 3, 4, 4, 1, 3, 5, 5, 6, 5, 6, 4, 3, 5, 1, 1, 3, 4, 4, 2, 7, 2, 4, 4, 2, 8, 3, 7, 7, 3, 5, 4, 6, 1, 3, 4, 4, 7, 5, 4, 6, 2
Offset: 1
Keywords
Examples
a(14) = 1 with 5^2 + 10^0 = 26 a primitive root modulo prime(14) = 43. a(101) = 1 with 5^0 + 10^0 = 2 a primitive root modulo prime(101) = 547. a(111) = 1 with 5^2 + 10 = 35 a primitive root modulo prime(111) = 607. a(5718) = 1 with 5^0 + 10^3 = 1001 a primitive root modulo prime(5718) = 56401. a(6613) = 1 with 5^1 + 10^3 = 1005 a primitive root modulo prime(6613) = 66301. a(430516) = 1 with 5^5 + 10^1 = 3135 a primitive root modulo prime(430516) = 6276271.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28--Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n]; Dv[n_]:=Dv[n]=Divisors[n]; gp[g_,p_]:=gp[g,p]=Mod[g,p]>0&&Sum[Boole[PowerMod[g,Dv[p-1][[k]],p]==1],{k,1,Length[Dv[p-1]]-1}]==0; tab={};Do[r=0;Do[If[gp[5^a+10^b,p[n]],r=r+1],{a,0,Log[5,p[n]-1]},{b,0,Log[10,p[n]-5^a]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Comments