This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305050 #6 Sep 01 2018 03:55:21 %S A305050 1,2,8,20,56,128,316,684,1532,3192,6704,13436,26984,52352,101316, %T A305050 191320,359334,662292,1213360,2189380,3925432,6951592,12231332, %U A305050 21298452,36856840,63211164,107765896,182295468,306625208,512190992,851011960,1405199028,2308629300,3771593392 %N A305050 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))/(1 - x^(i*j*k)). %C A305050 Convolution of the sequences A174465 and A280473. %H A305050 Vaclav Kotesovec, <a href="/A305050/b305050.txt">Table of n, a(n) for n = 0..10000</a> %H A305050 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A305050 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A305050 G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007425(k). %t A305050 nmax = 33; CoefficientList[Series[Product[(1 + x^(i j k))/(1 - x^(i j k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x] %t A305050 nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}], {x, 0, nmax}], x] %Y A305050 Cf. A007425, A174465, A280473, A301554. %K A305050 nonn %O A305050 0,2 %A A305050 _Ilya Gutkovskiy_, May 24 2018