cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305055 Numbers n such that the z-density of the integer partition with Heinz number n is 0.

Original entry on oeis.org

1, 169, 481, 507, 793, 841, 845, 1157, 1183, 1369, 1443, 1469, 1521, 1849, 1963, 2059, 2209, 2257, 2353, 2379, 2405, 2523, 2535, 2899, 3211, 3263, 3277, 3293, 3367, 3471, 3549, 3653, 3721, 3887, 3965, 4107, 4121, 4181, 4225, 4329, 4394, 4407, 4563, 4601, 4667
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.

Crossrefs

Programs

  • Mathematica
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Select[Range[1000],zens[#]==0&]