This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305075 #20 Mar 13 2022 14:00:18 %S A305075 8,40,72,104,136,168,200,232,264,296,328,360,392,424,456,488,520,552, %T A305075 584,616,648,680,712,744,776,808,840,872,904,936,968,1000,1032,1064, %U A305075 1096,1128,1160,1192,1224,1256,1288,1320,1352,1384,1416,1448,1480,1512,1544,1576 %N A305075 a(n) = 32*n - 24 (n>=1). %C A305075 a(n) (n>=2) is the second Zagreb index of the single oxide chain SOX(n), defined pictorially in the Simonraj et al. reference (Fig. 4, where SOX(9) is shown marked as OX(1,9)). %C A305075 The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. %C A305075 The M-polynomial of SL(n) is M(SL(n);x,y) = 2*x^2*y^2 + 2*n*x^2*y^4 + (n - 2)*x^4*y^4 (n>=2). %H A305075 Muniru A Asiru, <a href="/A305075/b305075.txt">Table of n, a(n) for n = 1..5000</a> %H A305075 F. Simonraj and A. George, <a href="http://doi.org/10.7763/IJFCC.2013.V2.128">Topological properties of few poly oxide, poly silicate, DOX and DSL networks</a>, International J. of Future Computer and Communication, 2, No. 2, 2013, 90-95. %H A305075 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1) %F A305075 a(n) = A063164(n) for n > 1. %F A305075 From _Colin Barker_, May 29 2018: (Start) %F A305075 G.f.: 8*x*(1 + 3*x) / (1 - x)^2. %F A305075 a(n) = 2*a(n-1) - a(n-2) for n>2. %F A305075 (End) %p A305075 seq(32*n - 24, n = 1 .. 50); %t A305075 32*Range[60]-24 (* or *) LinearRecurrence[{2,-1},{8,40},60] (* _Harvey P. Dale_, Mar 13 2022 *) %o A305075 (GAP) List([1..50], n->32*n-24); # _Muniru A Asiru_, May 27 2018 %o A305075 (PARI) Vec(8*x*(1 + 3*x) / (1 - x)^2 + O(x^50)) \\ _Colin Barker_, May 29 2018 %Y A305075 Cf. A063164, A305074. %K A305075 nonn,easy %O A305075 1,1 %A A305075 _Emeric Deutsch_, May 26 2018