This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305078 #10 Aug 03 2021 01:55:00 %S A305078 2,3,5,7,9,11,13,17,19,21,23,25,27,29,31,37,39,41,43,47,49,53,57,59, %T A305078 61,63,65,67,71,73,79,81,83,87,89,91,97,101,103,107,109,111,113,115, %U A305078 117,121,125,127,129,131,133,137,139,147,149,151,157,159,163,167 %N A305078 Heinz numbers of connected integer partitions. %C A305078 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A305078 Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph. %H A305078 Madeline Locus Dawsey, Tyler Russell and Dannie Urban, <a href="https://arxiv.org/abs/2108.00943">Polynomials Associated to Integer Partitions</a>, arXiv:2108.00943 [math.NT], 2021. %e A305078 The sequence of all connected multiset multisystems (see A302242, A112798) begins: %e A305078 2: {{}} %e A305078 3: {{1}} %e A305078 5: {{2}} %e A305078 7: {{1,1}} %e A305078 9: {{1},{1}} %e A305078 11: {{3}} %e A305078 13: {{1,2}} %e A305078 17: {{4}} %e A305078 19: {{1,1,1}} %e A305078 21: {{1},{1,1}} %e A305078 23: {{2,2}} %e A305078 25: {{2},{2}} %e A305078 27: {{1},{1},{1}} %e A305078 29: {{1,3}} %e A305078 31: {{5}} %e A305078 37: {{1,1,2}} %e A305078 39: {{1},{1,2}} %e A305078 41: {{6}} %e A305078 43: {{1,4}} %e A305078 47: {{2,3}} %e A305078 49: {{1,1},{1,1}} %e A305078 53: {{1,1,1,1}} %e A305078 57: {{1},{1,1,1}} %e A305078 59: {{7}} %e A305078 61: {{1,2,2}} %e A305078 63: {{1},{1},{1,1}} %e A305078 65: {{2},{1,2}} %e A305078 67: {{8}} %e A305078 71: {{1,1,3}} %e A305078 73: {{2,4}} %e A305078 79: {{1,5}} %e A305078 81: {{1},{1},{1},{1}} %e A305078 83: {{9}} %e A305078 87: {{1},{1,3}} %e A305078 89: {{1,1,1,2}} %e A305078 91: {{1,1},{1,2}} %e A305078 97: {{3,3}} %t A305078 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A305078 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A305078 Select[Range[300],Length[zsm[primeMS[#]]]==1&] %Y A305078 Cf. A001221, A048143, A056239, A112798, A286518, A286520, A290103, A302242, A303837, A304118, A304714, A304716, A305052, A305055, A305079. %K A305078 nonn %O A305078 1,1 %A A305078 _Gus Wiseman_, May 24 2018