cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305079 Number of connected components of the integer partition with Heinz number n.

This page as a plain text file.
%I A305079 #21 Dec 08 2018 21:01:33
%S A305079 0,1,1,2,1,2,1,3,1,2,1,3,1,2,2,4,1,2,1,3,1,2,1,4,1,2,1,3,1,3,1,5,2,2,
%T A305079 2,3,1,2,1,4,1,2,1,3,2,2,1,5,1,2,2,3,1,2,2,4,1,2,1,4,1,2,1,6,1,3,1,3,
%U A305079 2,3,1,4,1,2,2,3,2,2,1,5,1,2,1,3,2,2,1
%N A305079 Number of connected components of the integer partition with Heinz number n.
%C A305079 First differs from |A305052(n)| at a(169) = 1, A305052(169) = 0.
%C A305079 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A305079 Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).
%H A305079 Antti Karttunen, <a href="/A305079/b305079.txt">Table of n, a(n) for n = 1..16384</a>
%H A305079 Antti Karttunen, <a href="/A305079/a305079.txt">Data supplement: n, a(n) computed for n =  1..100000</a>
%H A305079 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A305079 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A305079 For all n, k > 0, we have a(2^n * k) = n + a(k).
%F A305079 For all x, y > 0, we have a(x * y) <= a(x) + a(y).
%F A305079 For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
%F A305079 a(n) = A305501(A064989(n)) + A007814(n). - _Antti Karttunen_, Nov 10 2018
%e A305079 The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
%t A305079 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A305079 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A305079 Table[Length[zsm[primeMS[n]]],{n,100}]
%o A305079 (PARI)
%o A305079 zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
%o A305079 A007814(n) = valuation(n,2);
%o A305079 A000265(n) = (n/2^A007814(n));
%o A305079 A305079(n) = if(!(n%2),A007814(n)+A305079(A000265(n)), my(cs = apply(p -> primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ _Antti Karttunen_, Nov 10 2018
%Y A305079 Cf. A001221, A048143, A056239, A112798, A286518, A286520, A290103, A302242, A303837, A304118, A304714, A304716, A305052, A305055, A305078, A305501.
%K A305079 nonn
%O A305079 1,4
%A A305079 _Gus Wiseman_, May 24 2018
%E A305079 Terms and Mathematica program corrected by _Gus Wiseman_, Nov 10 2018