This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305082 #13 Feb 16 2021 17:55:48 %S A305082 0,1,3,5,9,13,20,28,39,54,71,94,124,159,201,258,322,401,499,613,750, %T A305082 918,1110,1340,1617,1935,2308,2752,3261,3854,4554,5350,6273,7348,8572, %U A305082 9983,11612,13460,15578,18007,20761,23894,27473,31511,36090,41296,47152,53767 %N A305082 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k). %C A305082 Convolution of A000005 and A000009. %C A305082 Apart from initial zero this is the convolution of A341062 and A036469. - _Omar E. Pol_, Feb 16 2021 %H A305082 Vaclav Kotesovec, <a href="/A305082/b305082.txt">Table of n, a(n) for n = 0..10000</a> %F A305082 a(n) ~ 3^(1/4)*(2*gamma + log(12*n/Pi^2)) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)), where gamma is the Euler-Mascheroni constant A001620. %t A305082 nmax = 50; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x] %t A305082 nmax = 50; CoefficientList[Series[((Log[1-x] + QPolyGamma[0, 1, x]) * QPochhammer[-1, x]) / (2*Log[x]), {x, 0, nmax}], x] %Y A305082 Cf. A000005, A000009, A006128, A015723, A209423. %Y A305082 Cf. A001227, A048272, A067588, A090867, A036469, A341062. %K A305082 nonn %O A305082 0,3 %A A305082 _Vaclav Kotesovec_, May 25 2018