This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305098 #15 Sep 05 2018 02:26:28 %S A305098 1,-1,1,2,-1,-4,1,6,4,-1,-8,-12,1,10,24,8,-1,-12,-40,-32,1,14,60,80, %T A305098 16,-1,-16,-84,-160,-80,1,18,112,280,240,32,-1,-20,-144,-448,-560, %U A305098 -192,1,22,180,672,1120,672,64,-1,-24,-220,-960,-2016,-1792,-448 %N A305098 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. %C A305098 The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A303872 ((-1+2*x)^n). %C A305098 The coefficients in the expansion of 1/(1+x-2x^2) are given by the sequence generated by the row sums. %C A305098 When n is even the numbers in the row are positive, and when n is odd the numbers in the row are negative. %D A305098 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391. %F A305098 G.f.: 1 / (1 + t*x - 2t^2). %e A305098 Triangle begins: %e A305098 1; %e A305098 -1; %e A305098 1, 2; %e A305098 -1, -4; %e A305098 1, 6, 4; %e A305098 -1, -8, -12; %e A305098 1, 10, 24, 8; %e A305098 -1, -12, -40, -32; %e A305098 1, 14, 60, 80, 16; %e A305098 -1, -16, -84, -160, -80; %e A305098 1, 18, 112, 280, 240, 32; %e A305098 -1, -20, -144, -448, -560, -192; %e A305098 1, 22, 180, 672, 1120, 672, 64; %e A305098 -1, -24, -220, -960, -2016, -1792, -448; %e A305098 1, 26, 264, 1320, 3360, 4032, 1792, 128; %e A305098 -1, -28, -312, -1760, -5280, -8064, -5376, -1024; %e A305098 1, 30, 364, 2288, 7920, 14784, 13440, 4608, 256; %e A305098 -1, -32, -420, -2912, -11440, -25344, -29568, -15360, -2304; %t A305098 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten %o A305098 (PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-2, k-1))); %o A305098 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 26 2018 %Y A305098 Signed version of A128099. %Y A305098 Row sums give A077925. %Y A305098 Cf. A303872, A033999 (column 0). %K A305098 tabf,easy,sign %O A305098 0,4 %A A305098 _Shara Lalo_, May 25 2018