This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305101 #11 Jun 18 2020 03:24:58 %S A305101 0,1,2,6,11,22,40,70,116,191,304,474,726,1094,1624,2384,3453,4950, %T A305101 7030,9890,13798,19108,26264,35858,48652,65615,87996,117396,155826, %U A305101 205854,270728,354506,462306,600544,777184,1002180,1287889,1649578,2106152,2680924 %N A305101 G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k). %C A305101 Convolution of A209423 and A000009. %C A305101 Convolution of A015723 and A000041. %C A305101 Convolution of A048272 and A015128. %C A305101 a(n) is the number of overlined parts in all overpartitions of n. - _Joerg Arndt_, Jun 18 2020 %F A305101 a(n) ~ exp(sqrt(n)*Pi) * log(2) / (4*Pi*sqrt(n)). %F A305101 a(n) = A305122(n) + A305124(n). %t A305101 nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] %o A305101 (PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ _Joerg Arndt_, Jun 18 2020 %Y A305101 Cf. A006128, A015723, A209423, A305082, A305102. %Y A305101 Cf. A335651 and A335666. %K A305101 nonn %O A305101 0,3 %A A305101 _Vaclav Kotesovec_, May 25 2018