This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305102 #9 Jun 18 2020 03:24:53 %S A305102 0,1,4,10,23,46,88,158,274,459,748,1190,1858,2846,4292,6384,9373, %T A305102 13602,19536,27782,39158,54740,75928,104562,143036,194423,262704, %U A305102 352988,471778,627382,830352,1093994,1435132,1874920,2439832,3163020,4085825,5259602,6748136 %N A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k). %C A305102 Convolution of A006128 and A000009. %C A305102 Convolution of A305082 and A000041. %C A305102 Convolution of A000005 and A015128. %C A305102 a(n) is the number of non-overlined parts in all overpartitions of n. - _Joerg Arndt_, Jun 18 2020 %H A305102 Vaclav Kotesovec, <a href="/A305102/b305102.txt">Table of n, a(n) for n = 0..10000</a> %F A305102 a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620. %t A305102 nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] %o A305102 (PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ _Joerg Arndt_, Jun 18 2020 %Y A305102 Cf. A006128, A015723, A209423, A305082, A305101. %Y A305102 Cf. A335651 and A335666. %K A305102 nonn %O A305102 0,3 %A A305102 _Vaclav Kotesovec_, May 25 2018