cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305104 G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

This page as a plain text file.
%I A305104 #7 May 25 2018 18:58:40
%S A305104 0,0,1,2,6,12,24,44,79,134,222,358,566,876,1334,2000,2960,4326,6253,
%T A305104 8946,12680,17816,24832,34352,47192,64404,87354,117796,157976,210764,
%U A305104 279812,369744,486413,637188,831324,1080420,1398968,1805012,2320992,2974728,3800618
%N A305104 G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).
%C A305104 Convolution A066898 of and A000009.
%C A305104 Convolution A090867 of and A000041.
%H A305104 Vaclav Kotesovec, <a href="/A305104/b305104.txt">Table of n, a(n) for n = 0..10000</a>
%F A305104 a(n) ~ (2*gamma + log(n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.
%t A305104 nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1-x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A305104 Cf. A015128, A066898, A090867, A305102, A305105.
%K A305104 nonn
%O A305104 0,4
%A A305104 _Vaclav Kotesovec_, May 25 2018